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The basic works in the theory of the bifurcation of the equilibrium points are those of 

Poincark IJl and 21. and Chetaev [3 and 41. From p to 43 it follows: (I,) The points of 
stability changes on the branches of the equilibria curve are points of bifurcation of rhe 

equilibrium (9; (2) the distribution of the stability on the branches of the equilibria 

curve in the neighborhood of the bifurcation point follows a determined law, This law 

has a simpler form (we shall call it “particular law of distribution of the stability”) for 
systems with one degree of freedom and systems with n degrees of freedom for which 
the rank of the Hessian of the potential energy is equal to n-1. (See below Section 2, 

para 9). The potential energy is supposed to be analytic 

In the derivatio;; <,f statement (2), it has been assumed in [l to 41 that the zeros of the 
Hessian of the potential energy (the critical points) are isolated on the branches of the 
equilibria curve. The statement (1) follows from [I to 4J when a more rigorous condit- 
ion is satisfied OR the branch under consideration: the condition of sign change of the 

Hessian (see the note to the theorem 2.1). 

In the present paper it is shown (Theorem 2.1) that the statement (1) is satisfied even 
if these conditions are not satisfied. At the same time, the condition of isolation of 

critical points is true for the statement (2) that of the distribution of the equilibrium 
points (an example is given of a potential energy for which this law is not satisfied be- 

cause the indicated condition is not fulfilled, see Section 3). A derivation is made of 

a class of systems, important for practical cases, for which the parricular law of distrib- 
ution of the equilibrigm points rc;rrlains valid even if the condition of isolation of the 
critical points is not satisfied (?‘heorem 2.4). 

Particular consideration has been given to the case in which some position of equil- 
ibrium exists for all values of the parameter a and is stable for a cCto where s is the 

bifurcation value. According to the theorems of Poincard-Chetaev. this position of equi- 
librium can keep or lose its stability at the point a,, depending upon the number of 
branches of the curve of the equilibria which intersect at that point.. It is shown (Theorem 
2.2). that for the class of systems mentioned above, the stability is lost at that point, 

whereupon the condition of isolation, r C Lhe critical points is not assumed to be satisfied 
and the rank of the Hessian is not assL..ned to be equal to n-1 (From there follow the 

3. By points of bifurcation of the equilibria,%:e means the points of intersection of the 
branches of the equilibria curve and the limit *)oints in the sense of Poincarti p] (For more 
specific explanation see Definition 1.2 and the note at the end of Section 1). 
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conclusions concerning the number of branches which intersect tili: point considered). 

An analogous result has been obtained for linear systems by Ziegler IS]. 
In this paper we do not touch upon the important question of using the Poincark- 

Chetaev theory of bifurcation of the equilibrium points, We mention Rumiantsev’s paper 

[63 in connection with this. 
2. We shall investigate conservative systems with a finite number of degrees of free- 

dom and potential energies n ( x,a) depending on one real parameter cc E I Mere x 
= (Xl , . . . ,x”) is a vector of the coordinate space 8 changing in a certain region con 

taining the two 8 of space R;A represents an interval of the numerical axis, 
The neighborho~ of the points x E I-I,’ u E a.i, (x. af E II XC _ 1 are denoted, respect 

ively by S (x;, 1 (u), 0 ix, u), and the E: -vicinity by ,sE (x), I’ (u)* OE (x, a). 

By the curve of the equilibria B is understood the set of points of Rti satisfying Eq. 

grad, Il (8, a) “. 0 11.1) 

De fin i t i o n I . 1 (see [43). The point f x, ,a,) of the equilibria curve is said to 

be critical, if at this point the Hessian of the potential energy is equal to zero 

De f i n i t i o n 1. 2 (“) The point (x0 ,CX O) of the curve of the equilibria is said to be 
a (real) point of bifurcation of the equilibria if for every C: >O there is an cc’, / ulj - a’ I 

< E such that in the & - ~~ighborho~ of the point x, there are for a=a’ at least two 
positions of equilibrium x1, x2 i.e. 

x1, X, E SE (x& a’ E 1’ (ao), grad, II (x1, a’) = grad, 11 (x2, a’) --7 0 

De fin i t i o n 1 l 3 A point of bifurcation ( xo ,a,) is said to be a limit point if in a 

sufficiently small neighborhood of this point for ct %Q, (a 2%) there are no points of 

equilibrium different from ( x0 JY,,), 
A point ( x’.c& ‘f of the equilibria curve is said to be a point of stable (or unstable) 

equilibrium if x’ is a point of stable (or unstable} equilibrium for ~=a . 
D e fi n i t io n 1. 4 (see [4:) We shall call points of change of stability on some branch 

Cof the equilibria curve, the points located at the limits of the regions of stability and 
instability on C(it is assumed that those domains are the intervals of the branch c), 

BY a branch of the equilibria curve is meant the smooth curve C! c B. From the definition 

of the equilibria curve its branches are real. Furthermore, at times the terms “imaginary 
branch” and ‘“semibranch, emanating from scme point” are used (83. 

We shall make a few remarks concerning the meaning of “point of bifurcation of the 
equilibria”. 

Definition 1,2 is equivalent to the statement that the point ( x0 ,a,) appears as a 
branch point of the real solution of Eq. (1. l), For an analytic rr( ~.a,) such a point ap- 

pears either as a point of intersection of the equilibria curves or a limit point in the sense of 

Poincare fl] (7. 

3 
4 

Compare with the definition of the branch point of an operator, depending on a parameter ~1. 
In both cases,the point(G,Uo) belongs at least to two single parameter(parameterCL) con- 

tinuous families of real forms of equilibrium It to 41. In the second case they form a branch, 
tangent to the hyperplanea= a~ located in the domain as (a2 Q) 
one imaginary branch. 

and intersecting at least 
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Cbetaev 141, p.52) calls the ~~ntofbifurcation of the equilibrium a point satisQing the con- 

dition(U),i.e.he uses this term as a synonim of the term “critical point”also accepted by him, 
A pointsatis~ing(l,2),isby definitiona branch point for the real so~utionsof~q~(~.~~, 

Moreover it is pointed out in [I and “21 that the condition (1.2) is necessary but not suf- 
ficient for branching. It is possible to have particular cases for which for an analytical 

TT(X.CZ) a point satisfying (1.2) is neither a point of intersection of the real branches 
nor a limit point. 

For instance, such is the point (0, 0) for the potential energy u (r7 a) IT 1.4 + $$. 

The equilibria curve consists here of a single branch, the curve x -: 0, The point (0, F) 

is the only critical point. 

In this case, there is an imaginary branching at the point (0,O); this always occurs in 

particular cases of systems, satisfying the condition of isolation of critical points (sysrems 
of this type are considered in [l to 43). 

When this condition is violated, the critical point may have neither a reat nor an im- 
aginary branching, as, for instance in the trivial case of the potential energy Il- cm* 
(a > 0) Here the Hessian of the potential energy is identically equal to zero on the 
equilibria curve X= 0,ct > 0, 

Thus Definition 1.2 is equivalent to Chetaev’s definition with an accuracy up to the 

particular cases mentioned, 

In the first oftheexamples shown above the point (0,O) is critical, but is not a point 
of bifurcation in the sense of Definition 1.2. In the second case all points of the straight 
line z = 0, a > 0 are such points. 

Since in the present paper the imaginary branches of the equilibria curve are not con- 

sidered, and it is not assumed that the condition of isolation of the critical points is sat- 

isfied,Definition 1.2 turns out to be conveniqnt, 

2, 1 o. T h e o r e m 2. 1 Let{ a ,&9 be a point of stability change on some branch of the 
equilibria curve. For this point tobe a pointof bifurcation, in the case ofa conservative 

system with a finite number of degrees of freedom and a potential ener~~(x~~} analytic in x5 
it is sufficient that graprr (x.u) be continuous an the set(x, a) (for this purpose, it isohviousQ 
sufficient thatrr(x,a) be analytica on(x,a)). 

Note. With the additional condition that “on the branch c the Hessian of the pot,- 
ential energy which becomes zero at the point f x,,cI, ) changes its sign at that point” 

Theorem 2-l follows from jJ to 41 (see, for instance, the theorem on the number of 

branches [a], p. 53). Whereupon it is noted in jJ J that if the Hessian is equal to zero in 
c or does not change its sign at the critical point ( x, ,a, 9, then ( x,,a,J may not be a 
point of bifurcation. From Theorem 2.1 it follows that this possibility is not realized if 

( x, ,z,) is a point of stability change 
Proof. The following lemma is used in the proof. 
Lemma. Given the single parameter family of real functions TT( ~,a) with the vec- 

tor argument Y E R and the scalar parameter a E f-m, f- oo), satisfying the folbw- 

ing conditions: 
(a) grad, TT( X,U) is continuous on the set ( ~$2); 

(b) II (0. a) I grad, II (8, a) z 0; 
(c) FG~ each-fixed a c 0 the zero 8 of the space & is an exact minimum poinr of rhe 

function TT( x,a) i.e. there exists a neighborhood s( 6 ) depending on a and such that 
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Ti( XLL) >c/ fi for I E .s (0). x + 0, a <.t,; 

(d) For any C > (3 there exists a pair (S‘. (I ) .z 0’ (6. 0). x0 # 0 ‘such that ?T( x“ ,a’) 

-- 6. 
Then for each C > 0 there exists 

(s’. a’) E If (0. 0). s’ # 0. pxtl, n (s’. a’) = 0 (2.1) 

The proof of the Lemma wilt be given for a two-dimensional space R, but with an 
accuracy up to the terminology [9] it is also valid for arbitrary dimensions. We shall 
designate by K[t ,a) the level line of the function Il( x,c)(~ fixed) for which this func- 

tion takes on the value t. 
Let us consider the case for which the condition (d) is satisfied for a c o( the other 

possibilities can be considered analogously). In such a case it is possible to find a’sequ- 
ence {a,}, a, -_, 0, a,, <O, for which there exists a sequence ix,,) SUC~I that 

x, -3 9 for a, -+ 0, a, <O; TI (x,, a,) = 0 

Let us assume’ that the Lemma is wrong. Then there exist neighborhoods ST 8). I* (0) 
such that 

grad, II (x. a) # 0, x E As* (O), x # 0, u. E I* (0) (2.2) 

(for the sake of convenience we shall assume that (2.2) is also satisfied on the boundary 

of the neighborhood &‘*( 8 ) ). 

Let us fix some a, from the sequence ian, 1 determined above and the xn E {x,) 
which correspond to it. 

On the basis of (2.2) and the condition (c) of the Lemma, in a sufficient vicinity of 

the point 8, the level lines of the function n( x,a, ) for fixed CX, represent simple closed 
curves which encircle the point 8, do not include stationary points of the function TT(x, 
~1,) and have inside their domain, level lines of the specified type only. We shall den,- 
note by hl, the domain swept by that family (the subscript n indicates that cla is fixed). 

The following is easy to check: 

1) from any point of the domain 0, there is a line of steepest descent Y,, in 8; 
2) the boundary of the domain n, belongs to the level line K( 6, .a.,,) of the dividing 

[ 91 point 8 and %, whereby t, L, 0 for CL~ + 0. It is evident that 

sup II 6, a,) = &, XEQn 

Since the neighborhood 5*( 0 ) does not contain stationary points of the function l?( 
( x,a, ) the domain Q,, intersects with the boundary of that domain (in the converse case 
the family of level lines considered above could have been extended). We shall repre- 
sent by b, one of the intersection points, It is evident that 

On the basis of the finite dimensions of the space 8, there is at least one point x’# 6, 

in s( 8 ). any neighborhood of which intersects with an infinite number of curves y,, ; 
all such points belong to the level line K( 0.0) whereby the entire sequence {r,,’ is con- 

tained .in any neighborhood of the level line. From there on, taking into consideration 
the condition (a) of the Lemma and also the fact that the direction yn at each point 
coincides with the direction grad, II (x, On) at the same point, we get 

grad, II (x*, 0) = 0 

which contradicts the assumption (2.2) and therefore proves the Lemma, 
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It is not difficult to prove that the following is true if the conditions (a), (b) of the 

Lemma are satisfied, and the conditions (c),(d) are replaced by; 

(c’) for CX ~0, there exists a neighborhood s(a ) such that I](x, (I) > 0, x c~ .c (c)j (>$’ (ti) 
depends on a, 

(d’) for a > 0 in each s( 8) there exists x’f 8,rr( X’,(X) IO, then (2.1) is satisfied. 
We shall show that if this result is taken into consideration, Theorem 2. I follows 

from the Lemma. It is possible to confine oneself to the case in which the line x : 3 

belongs to the equilibria curve and the point of stability change (8,@ located on that 

branch is considered. (Indeed, if (x, ,a,,) is a point of stability change on some arbitrary 

branch c then either ( 3$ ,a,) is a limit point or in the neighborhood of that point the 
branch ohas an explicit representation x = It(a) and by an appropriate change of vari- 
ables it is possible to reduce the problem to the case pointed out earlier). Let the branch 

x = 8 be stable for CI < 0 and unstable for cx z 0 (CX sufficiently small), Let us also take 

l7( 8~3.) 5 0. Then for the potential energy TT( x$X) the relation (2.1) of the Lemma is 
equivalent to the fact that (8.0) is a point of bifurcation, i.e. a confirmation of Theorem 

2.1. But for the potential energy TT( x,a) the conditions (a),(b) of the Lemma are ob- 
viously satisfied, and the conditions (c’), (d’) follow from p-01 (Section 5) and the 

Theorems of Lagrange, Lejeune-Dirichlet (note that for all sufficiently small fixed ~3. 

the position of equilibrium x = 8 can be considered as isolated, since in the opposite 

case (2.1) is known to be satisfied), Theorem 2.1 is proved. 
In two particular cases of conservative systems, for systems with one degree of free- 

dom and a potential energy analytic in x, and for systems with many degrees of freedom 
having for potential energy a form in x,Theorems 2.1 can be somewhat strengthened: in 

these sytems it is sufffcient to require the continuity of TT( x,a) with respect to ff for 

fixed values of x. 

9. Let the line x = 8 belong to the equilibrium curve B i. e. 

grad, II (0, a) 5 0 (2.3) 

and let the point (8 ,&,)be a point of bifurcation, whereby the equilibrium x = 0 is stable 

fora <a, ora>a,. 
From Cl to 41 it is easy to obtain that if (8,a,) is an isolated critical point, the minor 

A, of the first angular element of the.Hessian is not equal to zero at the point [6,0&J 
and if in the domain 21 > 0 (~1 < 0) there is an odd number of semibranches passing 

through the point (8 ,cr_), then that point is a point of stability change on the branch 
x = 8; if the number is even then it lies in the domain of stability of that branch. If the. 
condition A, (8, a*) # 0 is not fulfilled or if the CritiCal point (8,C&,) is not isolated, 

then it is not known whether it appears as a point of stability change, 
We shall limit ourselves now to the investigation of systems, the potential energy of 

which has the form (“) 
II (x, a) = U (x) - f (a) v (x) (2.4) 

1 Compare with the special form of the potential energy in [5]. The form (2.4) is ob- 

tained for instance for the potential energy of conservative elastic systems withndegrees 

of freedom& which the parameter a is a force parameter and U(x) is the potential 

energy of deformation [5]. It is, in general, possible to reduce to a similar form the expres- 

sion of Routh’s potential in problems of the stability of the stationary motions of conserva- 
tive non- gyroscopically coupled systems. Here using the theory of Foincark-Chetaev, 

one has as parameters the generalized impulses of the cyclic coordinates 161. 
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where f(a) is a continuous monotonic function, U( x), Z’(x) are analytic functions, sat- 
isfying the following property: if there exists an equilibrium position x, which is kept 

for all values of the parameter CI , then the increment at the point x, of at least one of 
the functions,uor V is sign-definite in the neighborhood of that point. 

The ore m 2. 2. Let us assume (2.3) is satisfied and the potential energy has the 
form (2.4). Then if (8&t,) is a point of bifurcation of the equilibria and the equilibrium 

x = 8 is stable for Cc <cI, or a >cC, then ( e,a,) is a point of stability change on the 

branch x = 8 (i.e. the point (8,a,) cannot lie inside the domain of stability of the 

branch x = 0). 

PI oo f. Let (8$X_,) be a point of bifurcation; x = x(a) is the branch c of the equi- 

libria curve, which passes through the point (@,a,), and does not coincide with the line 

x = 8 nor is orthogonal to it (if cis orthogonal to the axis A, the theorem is obvious); 

C,, C, are, respectively, the projections of con R and A. Without loss of generality it 

can be assumed that U( 8 )= V( 9 )= 0, and consequently B( 8 ,a)~ 0. 
The proof of the theorem is based on the statement 

u (9 
lim vfx) = f NO) for x + 0, x E C, (2.5) 

which follows if the sign definiteness of u( x ) ( v( x)) in the neighborhood of zero is 

taken into consideration, from the identity 

grad U (x) - f (a) grad V (x) E 0, (x, a) EC (2.6) 

Let us show that (2.5) follows from (5 6). Let us introduce the notation 

ffi(X)+$, Vi(X) = 3 

It is easy to verify that there are numbers i (let t = 1,2, . . fl ,m sn) such that in a 

sufficiently small neighborhood of the point ( 8,~~) 

ui (x1 * 09 y, (x) # 0 for x+6, x E C, (i=i ) ,..., m 
u* (9) s v, (x) 5% 0 for X EC, (i = m + i,..., n) 

It follows, taking (2.6) into account that 

u, (x) 
lim- - I7 (x) -f(a0) for x-+6, 

i 
XEC, (i==i.. . ., m) 

Since UC 8 ) = v( 8 ) = 0, then, using the sign definiteness of v( x) in the neighborhood 
of zero we get 

Here the summation with respect to t extends from 1 to m, From the last equation 

(2.5) follows. On the basis of (2.5) and the monotonic behavior of Aa) the point 
(8 ,a,) does not appear as a point internal to the domain on the line x = 8. 
the Theorem. 

This proves 

The o re m 2.3 If for a conservative system having a finite number of degrees of 
freedom the potential energy is a form in x monotonously and continuously decreasing 
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in &z for fixed x, then all the bifurcation points are inside or on the boundary of an ur,- 
stable trivial equilibrium position (which, obviously, exists for all a). 

Let us note that from the Expression(2.4) the monotonic behaviour of &~,a) ina follows 

(one of the requirements of Theorem 2.3). Thus,for arbitrary systems unlike those systems 

for which the potential energy appears as a form (in particular for linear systems}, this 

requirement alone is not sufficient (see Example 3-2). 
It is easy to prove Ttteorem 2.3 by using the following property of homo~eneo~is 

functions: iffix)i$a homogeneousfunctionandS{x~ =O, x*&e, then f !x)‘:z ~t,atleaston 

the path, connecting the points x’ and 6. The proof is analogous to the proofof the corres- 
ponding rheorem by Ziegler [5J which concerns linear systems. 

$, jet (x0,&,) be’a point of bifurcation of rhe equilibria, and let us assume that at 

that point the rank of the Hessian of the potential energy is equal to 73-1, Let for de- 

finiteness, the minor 

be different from zero. 

In that case a system with n degrees of freedom can be reduced to a sysrem with one 
degree of freedom in the “auxiliary space” (xl,(~) [I to 41. Such systems were con- 
sidered by Poincar6 11 and 25, Theorems on the distribution of the stability were ob- 

tained by Chetaev [3 and 41 without the limitations (2.7). 

Let us consider some information obtained from c to 41 (see also /8]). 

If (2.7) is satisfied, then Eqs. 

nn (x, a) 
8s” -= ,.*., t) (2.81 

determine in the neighborhood of the point (xO,ctO) the surface 

x = x (P, 01) (9 = 9 (x1, a) ,..., 2” = 39 (z’, u)) 

which intersects with hyperplane CI = CI, - t: (c sufficiently small} afong the simple (con- 

nected, without multiple points) curve L; : x = x (xx ,q-CJ (if (2.7) is not satisfied, then 

L consists of a few simple pieces). The eqrdlibria curve Blies on the surface (2,8), 

Its branches, passing through the point (q ,a,) intersect with hat a few points fi.. . . ,_“p 
numbered along the increasing coordinates X1. The potential energy 

II* ,($I”, a) = ri (9, rl, 139, a) ,..., xrL (1, a), a) 

determines in the auxiliary space (2 ,a) the equiIibria curve B” 

aII* (21, a) 
ad - =O 

which appears as the projection ofthe,curve Bon the surface&t a). Thereby the points 

P 1, . . . -4 are projected inur, the points*, . . . , Pp* of intersection of the curvesB”with the 

straight line 0. = a, - f?.~ and the curve2 is projected on rhe straight line &=I&, -e. Prweeding 

tie ~~WG$#W constructions for the hyperplane a =a, + 8 we get the points& e e *, i& and 
QI*,.*., C&** 

Let at the point of bifurcadon(x,,Q the zero of the Hessian be isolated on the equilibria 

curve, f. e. in some neighbarhood of that point 

4’ (x, IT) $1 0 for (x, a) =#= (5, a0), (x, a) E B (2.9) 

and let the mat&x (el) of the minor(2,7) be positive-definite at the point(g&). 
We &all denote ft by c& > 0 (2.40) 
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(for rhis purpose, when the condition (‘2.7) is satisfied it is sufficient to have at least one 

stable semibranch passing through the point (x0 ,U O). Then the following relations are 

valid Il’i] = [pi*] (2.11) 

tl’il zz - IPi+t] (Z.12) 

(2.13) 

IL)11 = lQ11, lPpl = lQul (2.14) 

where [PJ = t 1, if the point P is stable, [p] = - 1 if the point P is unstable. 

The relation (2. II) indicates that to the stable points of the system investigated cor- 

respond stable points of the auxiliary system, and to the unstable ones correspond unstable 

points (the first is satisfied even without (2.10)). The relation (2.12) means that the 

stable and unstable points Pi alternate on the curve L as the points & l which corresp- 

ond to them on the curve Z = a, -8. The relation (2.14) means that the first points 

p1 and Q1 have the same character of stability: the same thing holds for the last points 

P, and 8,. 
Let us note that if (2.10) is not satisfied, then instead of interchanging the stable and 

unstable points Pi ( along (2.12)) the order of instability [4] is changed (then (2.12) is 
satiskpd in the auxiliary system). 

For the relations (2.11) to (2.14) the condition (2.9) is essential (see Section 3. 
Similarly, it is shown further on that for a potential energy of the form (2.4) these re- 

lations remain valid even without the condition (2.9). In other words the following 

theorem is valid. 
Theo r e m 2. 4 Let (x, ,a,) be a point of bifurcation of the equilibria and assume 

the potential energy has the form (2.4). Then for systems with one degree of freedom 
the relations (2.12) to (2.14) are valid; for systems with ndegrees of freedom, satisfying 
(2.10) the relations (2.11) to (2.14) are valid. 

Pro o f. Let US consider ‘first a system with one degree of freedom. It is simple to see 
that the relations (2.12) to (2.14) are satisfied if n (~,a) considered on the straight line 
a =a -C (Cf. = Cc, + E ), has at the points of intersection of that straight line and the 
brancOhes of the equilibria curve extremas inX(i. e. for lIb,a., -E ) the gtationary points 

do not appear as inflexion points, which happens, in particular if the Hessian is equal to 

zero). But at the points of the branch x = X 0 (if such a branch exists) the potential 
energy (2.4) has extrema in x. this follows from(2.5) by taking into consideration the sign 

definiteness of the increment V(X) -RX,). 
However, on the branches which do not coincide with X =X0 the Hessian 4s n / (a.+ 

of the potential energy (2.4) is not equal to zero (and, consequently, II(X ,a) has also 
an extremum in X). Indeed, let on some branch X =X(a) the identity 

be satisfied 

Since aII I ax z O,on the branch X=X(a) then 

aw (I, a) I dx (a) 
(a42 -+ a211 (2, a) 

x=x(a) da ax aa I x=x(a) E 0 
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By virtue of (2.15) we get 
8”IT (z, 2) j --- ir:r: 83 I =;: I 1 I, 

l.r=s! 7, ,,L. .I / : 

If the potential energy has the form ( 2. 4) and the branch X-1 X(a) does not coincide 

with x =X0, then from (2, IS) it follows that fl/ & --_ 0, which contradicts (2. ,C>. ‘~The 
theorem is proved for the case of one degree of freedom, 

Let us consider a system witn 7l degrees of freedom and satisfying (a. 1 G). of ;ic x,2,) 
has the form (2,4), then n “(xl ,a) has also a similar form. Thus, for the proof of 

Theorem (2.4) it is sufficient to show that independently from the conditior, (Z-9), to 

stable points P of the curve L of the hyperplane a :-a, -E correspond stable pointsf& 
on the straight line a ‘01, - 6 of the auxiliary space (x” ,a ) and conversely, to the 
stable points P* correspond stable points P(see the notations above) i, e. it is sufficient 
to prove (2.11). Let us assume I/(P) = II* z 0. 

If in the neighborhood O(p) of the point ,D 

II (x, a0 - E) > 0 for X EL, (x, a0 - 81 + P 

we shall say that II is positive definite (“II 10 “), in O(P) on J, (this is equivalent to the 
positive definiteness in ,$ f h f o t e unction II* in O(n). It is evident that if fir 0 in 
O(P) along all rhe variables x1, . . . ,.f on the hyperplane a = a 0 - E, then iI > 0 in 

O(P) on L. Conversely, let n > 0 in 0 (P) on L. Since X1 # const on the curve L , 
and on the basis of(-2.lO),n >Oin o(P) in the variables X’ , , . . ,xqthen n >oin O(P) in all the 
variables &. . , ,&Q. Then, the validity of the relation (2. II) follows from(Z, 4). me 
Theorem is proved, 

C on s e q u e n c e s of Theorems 2.2 and 2.4, If the potential energy has the form 

(2.4) and the equilibria curve contains the branch x = x0, stable for a < ao (a > ao), 

where (X, ,a,) is a point of bifurcation, then in sytems withormdegree of freedom in 

the half plane X >X, , an odd number of semi branches of the equilibria curve pass 
through (X, ,cI, ); in the systems with n degrees of freedom, satisfying (2.10) in th.e 

domain Z8 >X,l there is an odd number of branches of the equilibria curve passing 

through (x0 .a 0 ). 
3. We shall give two examples of potential energy showing that for an arbitrary 

potential energy, the law of the stability distribution can be broken if the law (2.9) of 

isolation of critical points is not satisfied, 
E x a m p 1 e 3, 1 Let the potential energy have the form (one-dimensional Case) 

II (I, a) = 2 a2xa + Bia a;23 + 24 (3.1) 
It is easily verified that the equilibria curve on the (m ) plane consists of the lines 

X=Oand X+a=O. The Hessian of the potential energy on the line X= 0 has the form 

A (a)= ha, and on the lineX+ a =Othe formD(C1)~O. The branchX;Ois entirely stable, 
and the brancb.%$@Oentirely unstable(with the exception of the pointfO.O). The point(0.q 
is the only bifurcation point. Thus the relation(2.14) is violated. Furthermore,the eqtili- 
brium mdoes not lose its stability at t!re bifurcation point@, O)which violates one of the laws 
ofpoincard-Schwartzschld(see for instance [87). Wenotice that on the branchz 0, the 

Hessian is not identically equal to zero, 1 IUS to violate this rule, it may be sufficient to violate 

the conditions (2.9) just on one branch. A trivial example of violation of the relation 

(2.12) (the law of the stability change) is obteiced from(3. l), by multiplying the right- 
hand side by -1. In that case the two branches , = 0 and X+a = 0 are unstable. 

E x a m p 1 e 3. 2 Let the potential energy have the form 
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f 3u*x2 + */glxs + $1 

rr(5, a) -= \ (1 _ a)r4 

for a \c 0 

for a >o 

It is easily verified that the function n(X,a) and its derivatives in X, are continuous 

in a. whereby n(X,a) is monotonically decreasing in a. The equilibria curve consists 

of the lines X = 0 and cx = 1 and the half-line X +c1 = 0.a 5 0. The Hessian of the pot- 

ential energy on the negative semi-axis,4 is equal to 4a2, on the positive semi-axis 

A and on the branch x + a = 0 ,a 5 0 it is identically equal to zero. The branch X = 0 

is stable for a, < 1 and unstable for CI > 1. The branch X + CI = 0, a 5 0 is unstable. Thus, 

here as in Example 3.1 the bifurcation point (0,O) is inside the domain of stability of 

the branch X = 0 in spite of the monotonous decrease of fl(X,a) in a (the other bifur- 

cation point (0,l) is a point of stability change on that branch). This violates the same 
assumptions that were violated in Example 3.1 and, furthermore, the relations (2.13). 

and also the formula giving the number of real branches intersecting in the bifurcation 

point [4] (p. 53) (to be more precise this formula loses its meaning at the point (0,O) ). 
The author thanks V. V. Rumiantsev for his useful remarks. 
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